34 lines
1.7 KiB
Python
34 lines
1.7 KiB
Python
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
import torch
|
|
from config import Config,Default,Dir
|
|
|
|
|
|
def get_model_train_dataset_json_file():
|
|
model_train_json_file = Dir.MODEL_DATASET_DIR + "/" + Default.TRAIN_JSONL_NEW_FILE
|
|
model_test_json_file = Dir.MODEL_DATASET_DIR + "/" + Default.TEST_JSONL_NEW_FILE
|
|
return model_train_json_file, model_test_json_file
|
|
|
|
|
|
def predict(messages, model, tokenizer):
|
|
device = "cuda"
|
|
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
|
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=2048)
|
|
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
return response
|
|
# 加载原下载路径的tokenizer和model
|
|
tokenizer = AutoTokenizer.from_pretrained("./Qwen3-0.6B/checkpoint-1084", use_fast=False, trust_remote_code=True)
|
|
model = AutoModelForCausalLM.from_pretrained("./Qwen3-0.6B/checkpoint-1084", device_map="auto", torch_dtype=torch.bfloat16)
|
|
test_texts = {
|
|
'instruction': "你是一个医学专家,你需要根据用户的问题,给出带有思考的回答。",
|
|
'input': "医生,我在研究内耳的前庭部分时,发现了一些特殊的结构,比如前庭嵴。请问前庭内还有哪些特殊的结构,它们的作用是什么?"
|
|
}
|
|
instruction = test_texts['instruction']
|
|
input_value = test_texts['input']
|
|
messages = [
|
|
{"role": "system", "content": f"{instruction}"},
|
|
{"role": "user", "content": f"{input_value}"}
|
|
]
|
|
response = predict(messages, model, tokenizer)
|
|
print(response) |