from transformers import AutoModelForCausalLM, AutoTokenizer import torch from config import Config,Default,Dir def get_model_train_dataset_json_file(): model_train_json_file = Dir.MODEL_DATASET_DIR + "/" + Default.TRAIN_JSONL_NEW_FILE model_test_json_file = Dir.MODEL_DATASET_DIR + "/" + Default.TEST_JSONL_NEW_FILE return model_train_json_file, model_test_json_file def predict(messages, model, tokenizer): device = "cuda" text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=2048) generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response # 加载原下载路径的tokenizer和model tokenizer = AutoTokenizer.from_pretrained("./Qwen3-0.6B/checkpoint-1084", use_fast=False, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("./Qwen3-0.6B/checkpoint-1084", device_map="auto", torch_dtype=torch.bfloat16) test_texts = { 'instruction': "你是一个医学专家,你需要根据用户的问题,给出带有思考的回答。", 'input': "医生,我在研究内耳的前庭部分时,发现了一些特殊的结构,比如前庭嵴。请问前庭内还有哪些特殊的结构,它们的作用是什么?" } instruction = test_texts['instruction'] input_value = test_texts['input'] messages = [ {"role": "system", "content": f"{instruction}"}, {"role": "user", "content": f"{input_value}"} ] response = predict(messages, model, tokenizer) print(response)