This commit is contained in:
renzhiyuan 2025-10-16 13:46:57 +08:00
parent 22ef225c8a
commit 164e5967b5
1 changed files with 73 additions and 0 deletions

73
create_model.py Normal file
View File

@ -0,0 +1,73 @@
import torch
import torch.nn as nn
import torch.nn.utils.prune as prune
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
# 1. 定义模型
class SimpleCNN(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
self.fc1 = nn.Linear(32 * 13 * 13, 10) # 假设输入为28x28经过池化后为13x13
def forward(self, x):
x = torch.relu(self.conv1(x))
x = x.view(x.size(0), -1)
x = self.fc1(x)
return x
# 2. 加载数据
transform = transforms.Compose([transforms.ToTensor()])
train_data = datasets.MNIST('./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_data, batch_size=64, shuffle=True)
# 3. 初始化模型
model = SimpleCNN()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
# 4. 训练原始模型(可选)
def train(model, epochs=5):
model.train()
for epoch in range(epochs):
for data, target in train_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train(model) # 可省略,直接使用预训练权重
# 5. 剪枝
# 对conv1层按L1范数剪枝50%
prune.l1_unstructured(module=model.conv1, name='weight', amount=0.5)
# 对fc1层剪枝30%
prune.l1_unstructured(module=model.fc1, name='weight', amount=0.3)
# 6. 移除剪枝掩码(永久剪枝)
def remove_pruning(model):
for name, module in model.named_modules():
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
prune.remove(module, 'weight')
remove_pruning(model)
# 7. 微调剪枝后模型
train(model, epochs=3)
# 8. 评估模型
def evaluate(model):
model.eval()
test_data = datasets.MNIST('./data', train=False, transform=transform)
test_loader = DataLoader(test_data, batch_size=64)
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
pred = output.argmax(dim=1)
correct += pred.eq(target).sum().item()
print(f"Accuracy: {correct / len(test_data):.2f}")
evaluate(model)