73 lines
2.2 KiB
Python
73 lines
2.2 KiB
Python
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.utils.prune as prune
|
||
from torchvision import datasets, transforms
|
||
from torch.utils.data import DataLoader
|
||
|
||
# 1. 定义模型
|
||
class SimpleCNN(nn.Module):
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
|
||
self.fc1 = nn.Linear(32 * 13 * 13, 10) # 假设输入为28x28,经过池化后为13x13
|
||
|
||
def forward(self, x):
|
||
x = torch.relu(self.conv1(x))
|
||
x = x.view(x.size(0), -1)
|
||
x = self.fc1(x)
|
||
return x
|
||
|
||
# 2. 加载数据
|
||
transform = transforms.Compose([transforms.ToTensor()])
|
||
train_data = datasets.MNIST('./data', train=True, download=True, transform=transform)
|
||
train_loader = DataLoader(train_data, batch_size=64, shuffle=True)
|
||
|
||
# 3. 初始化模型
|
||
model = SimpleCNN()
|
||
criterion = nn.CrossEntropyLoss()
|
||
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
|
||
|
||
# 4. 训练原始模型(可选)
|
||
def train(model, epochs=5):
|
||
model.train()
|
||
for epoch in range(epochs):
|
||
for data, target in train_loader:
|
||
optimizer.zero_grad()
|
||
output = model(data)
|
||
loss = criterion(output, target)
|
||
loss.backward()
|
||
optimizer.step()
|
||
|
||
train(model) # 可省略,直接使用预训练权重
|
||
|
||
# 5. 剪枝
|
||
# 对conv1层按L1范数剪枝50%
|
||
prune.l1_unstructured(module=model.conv1, name='weight', amount=0.5)
|
||
# 对fc1层剪枝30%
|
||
prune.l1_unstructured(module=model.fc1, name='weight', amount=0.3)
|
||
|
||
# 6. 移除剪枝掩码(永久剪枝)
|
||
def remove_pruning(model):
|
||
for name, module in model.named_modules():
|
||
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
|
||
prune.remove(module, 'weight')
|
||
|
||
remove_pruning(model)
|
||
|
||
# 7. 微调剪枝后模型
|
||
train(model, epochs=3)
|
||
|
||
# 8. 评估模型
|
||
def evaluate(model):
|
||
model.eval()
|
||
test_data = datasets.MNIST('./data', train=False, transform=transform)
|
||
test_loader = DataLoader(test_data, batch_size=64)
|
||
correct = 0
|
||
with torch.no_grad():
|
||
for data, target in test_loader:
|
||
output = model(data)
|
||
pred = output.argmax(dim=1)
|
||
correct += pred.eq(target).sum().item()
|
||
print(f"Accuracy: {correct / len(test_data):.2f}")
|
||
|
||
evaluate(model) |