This commit is contained in:
parent
22ef225c8a
commit
164e5967b5
|
|
@ -0,0 +1,73 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.utils.prune as prune
|
||||
from torchvision import datasets, transforms
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
# 1. 定义模型
|
||||
class SimpleCNN(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
|
||||
self.fc1 = nn.Linear(32 * 13 * 13, 10) # 假设输入为28x28,经过池化后为13x13
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.relu(self.conv1(x))
|
||||
x = x.view(x.size(0), -1)
|
||||
x = self.fc1(x)
|
||||
return x
|
||||
|
||||
# 2. 加载数据
|
||||
transform = transforms.Compose([transforms.ToTensor()])
|
||||
train_data = datasets.MNIST('./data', train=True, download=True, transform=transform)
|
||||
train_loader = DataLoader(train_data, batch_size=64, shuffle=True)
|
||||
|
||||
# 3. 初始化模型
|
||||
model = SimpleCNN()
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
|
||||
|
||||
# 4. 训练原始模型(可选)
|
||||
def train(model, epochs=5):
|
||||
model.train()
|
||||
for epoch in range(epochs):
|
||||
for data, target in train_loader:
|
||||
optimizer.zero_grad()
|
||||
output = model(data)
|
||||
loss = criterion(output, target)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
train(model) # 可省略,直接使用预训练权重
|
||||
|
||||
# 5. 剪枝
|
||||
# 对conv1层按L1范数剪枝50%
|
||||
prune.l1_unstructured(module=model.conv1, name='weight', amount=0.5)
|
||||
# 对fc1层剪枝30%
|
||||
prune.l1_unstructured(module=model.fc1, name='weight', amount=0.3)
|
||||
|
||||
# 6. 移除剪枝掩码(永久剪枝)
|
||||
def remove_pruning(model):
|
||||
for name, module in model.named_modules():
|
||||
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
|
||||
prune.remove(module, 'weight')
|
||||
|
||||
remove_pruning(model)
|
||||
|
||||
# 7. 微调剪枝后模型
|
||||
train(model, epochs=3)
|
||||
|
||||
# 8. 评估模型
|
||||
def evaluate(model):
|
||||
model.eval()
|
||||
test_data = datasets.MNIST('./data', train=False, transform=transform)
|
||||
test_loader = DataLoader(test_data, batch_size=64)
|
||||
correct = 0
|
||||
with torch.no_grad():
|
||||
for data, target in test_loader:
|
||||
output = model(data)
|
||||
pred = output.argmax(dim=1)
|
||||
correct += pred.eq(target).sum().item()
|
||||
print(f"Accuracy: {correct / len(test_data):.2f}")
|
||||
|
||||
evaluate(model)
|
||||
Loading…
Reference in New Issue