169 lines
5.8 KiB
Python
169 lines
5.8 KiB
Python
from langchain_community.document_loaders import TextLoader
|
||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||
from langchain_community.vectorstores import FAISS
|
||
from langchain_community.retrievers import BM25Retriever
|
||
from langchain.retrievers import EnsembleRetriever
|
||
from typing import List
|
||
import torch
|
||
|
||
|
||
class ModelScopeEmbeddings:
|
||
"""ModelScope 模型嵌入生成器"""
|
||
|
||
def __init__(self, model_name: str, device: str = None):
|
||
from modelscope import AutoModel, AutoTokenizer
|
||
self.model_name = model_name
|
||
self.device = "cpu" if device is None else device
|
||
self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||
self.model = AutoModel.from_pretrained(
|
||
model_name,
|
||
torch_dtype=torch.float16,
|
||
device_map=self.device,
|
||
trust_remote_code=True,
|
||
use_safetensors=True
|
||
)
|
||
|
||
def __call__(self, text: str) -> List[float]:
|
||
"""支持直接调用 embeddings(text)"""
|
||
return self.embed_query(text)
|
||
|
||
def embed_query(self, text: str) -> List[float]:
|
||
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(self.device)
|
||
with torch.no_grad():
|
||
outputs = self.model(**inputs)
|
||
embeddings = outputs.last_hidden_state.mean(dim=1).cpu().float().numpy()
|
||
return embeddings.squeeze(0).tolist()
|
||
|
||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
return [self.embed_query(text) for text in texts]
|
||
|
||
|
||
def main():
|
||
# 1. 文档加载与分块
|
||
print("加载并分块文档...")
|
||
try:
|
||
loader = TextLoader("./lsxd.txt", encoding="utf-8")
|
||
pages = loader.load()
|
||
except FileNotFoundError:
|
||
print("错误:未找到文档文件 './lsxd.txt'")
|
||
return
|
||
except Exception as e:
|
||
print(f"加载文档时出错: {str(e)}")
|
||
return
|
||
|
||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=200)
|
||
docs = text_splitter.split_documents(pages)
|
||
print(f"文档分块完成,共 {len(docs)} 个片段")
|
||
|
||
# 2. 初始化嵌入模型和向量存储
|
||
print("初始化嵌入模型和向量数据库...")
|
||
embeddings = None
|
||
try:
|
||
embeddings = ModelScopeEmbeddings(model_name="AI-ModelScope/bge-large-zh-v1.5", device="cpu")
|
||
except Exception as e:
|
||
print(f"初始化嵌入模型时出错: {str(e)}")
|
||
return
|
||
|
||
faiss_store = None
|
||
try:
|
||
# 使用 FAISS 存储向量
|
||
faiss_store = FAISS.from_documents(docs, embeddings)
|
||
faiss_retriever = faiss_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
||
except Exception as e:
|
||
print(f"初始化向量存储时出错: {str(e)}")
|
||
return
|
||
|
||
# 3. BM25 检索器
|
||
print("初始化 BM25 检索器...")
|
||
bm25_retriever = None
|
||
try:
|
||
bm25_retriever = BM25Retriever.from_documents(docs)
|
||
except Exception as e:
|
||
print(f"初始化 BM25 检索器时出错: {str(e)}")
|
||
return
|
||
|
||
# 4. 混合检索器
|
||
print("初始化混合检索器...")
|
||
ensemble_retriever = None
|
||
try:
|
||
ensemble_retriever = EnsembleRetriever(
|
||
retrievers=[bm25_retriever, faiss_retriever],
|
||
weights=[0.3, 0.7]
|
||
)
|
||
except Exception as e:
|
||
print(f"初始化混合检索器时出错: {str(e)}")
|
||
return
|
||
|
||
# 5. 加载 Qwen 大模型
|
||
print("加载大语言模型...")
|
||
model = None
|
||
tokenizer = None
|
||
device = "auto"
|
||
|
||
try:
|
||
from modelscope import AutoTokenizer, AutoModelForCausalLM
|
||
model_name = "Qwen/Qwen3-4B-AWQ"
|
||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||
model = AutoModelForCausalLM.from_pretrained(
|
||
model_name,
|
||
torch_dtype=torch.float16,
|
||
device_map=device,
|
||
trust_remote_code=True
|
||
)
|
||
model.eval()
|
||
except Exception as e:
|
||
print(f"加载大模型时出错: {str(e)}")
|
||
return
|
||
|
||
# 6. 查询与生成
|
||
def generate_response(query: str) -> str:
|
||
if not ensemble_retriever or not model or not tokenizer:
|
||
return "系统初始化未完成,无法处理请求"
|
||
|
||
try:
|
||
# 使用混合检索器获取相关文档
|
||
results = ensemble_retriever.get_relevant_documents(query)
|
||
context = "\n".join([f"文档片段:{doc.page_content[:500]}..." for doc in results[:3]])
|
||
|
||
# 构造 Prompt
|
||
prompt = f"""你是一个智能助手,请根据以下上下文回答用户问题。若信息不足,请回答"我不知道"。
|
||
|
||
用户问题:{query}
|
||
|
||
上下文信息:
|
||
{context}
|
||
|
||
回答:"""
|
||
# 生成回答
|
||
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
||
with torch.no_grad():
|
||
outputs = model.generate(
|
||
inputs.input_ids,
|
||
max_new_tokens=512,
|
||
temperature=0.3,
|
||
repetition_penalty=1.1,
|
||
do_sample=True,
|
||
top_p=0.9,
|
||
eos_token_id=tokenizer.eos_token_id
|
||
)
|
||
response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
|
||
return response.strip()
|
||
except Exception as e:
|
||
return f"生成回答时出错: {str(e)}"
|
||
|
||
# 示例查询
|
||
print("系统准备就绪,可以开始提问!")
|
||
while True:
|
||
query = input("\n请输入问题(输入 '退出' 结束):")
|
||
if query.strip().lower() == "退出":
|
||
break
|
||
if not query.strip():
|
||
print("请输入有效问题!")
|
||
continue
|
||
|
||
answer = generate_response(query)
|
||
print("AI回答:", answer)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main() |