34 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			34 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Python
		
	
	
	
from transformers import AutoModelForCausalLM, AutoTokenizer
 | 
						|
import torch
 | 
						|
from config import Config,Default,Dir
 | 
						|
 | 
						|
 | 
						|
def get_model_train_dataset_json_file():
 | 
						|
    model_train_json_file = Dir.MODEL_DATASET_DIR + "/" + Default.TRAIN_JSONL_NEW_FILE
 | 
						|
    model_test_json_file = Dir.MODEL_DATASET_DIR + "/" + Default.TEST_JSONL_NEW_FILE
 | 
						|
    return model_train_json_file, model_test_json_file
 | 
						|
 | 
						|
 | 
						|
def predict(messages, model, tokenizer):
 | 
						|
    device = "cuda"
 | 
						|
    text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
 | 
						|
    model_inputs = tokenizer([text], return_tensors="pt").to(device)
 | 
						|
    generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=2048)
 | 
						|
    generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
 | 
						|
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
 | 
						|
    return response
 | 
						|
# 加载原下载路径的tokenizer和model
 | 
						|
tokenizer = AutoTokenizer.from_pretrained("./Qwen3-0.6B/checkpoint-1084", use_fast=False, trust_remote_code=True)
 | 
						|
model = AutoModelForCausalLM.from_pretrained("./Qwen3-0.6B/checkpoint-1084", device_map="auto", torch_dtype=torch.bfloat16)
 | 
						|
test_texts = {
 | 
						|
    'instruction': "你是一个医学专家,你需要根据用户的问题,给出带有思考的回答。",
 | 
						|
    'input': "医生,我在研究内耳的前庭部分时,发现了一些特殊的结构,比如前庭嵴。请问前庭内还有哪些特殊的结构,它们的作用是什么?"
 | 
						|
}
 | 
						|
instruction = test_texts['instruction']
 | 
						|
input_value = test_texts['input']
 | 
						|
messages = [
 | 
						|
    {"role": "system", "content": f"{instruction}"},
 | 
						|
    {"role": "user", "content": f"{input_value}"}
 | 
						|
]
 | 
						|
response = predict(messages, model, tokenizer)
 | 
						|
print(response) |