This commit is contained in:
parent
50c6736a69
commit
22ef225c8a
Binary file not shown.
|
|
@ -16,6 +16,12 @@ class Config:
|
|||
SWANLAB_PROJECT = "qweb3-sft-medical-10-11-1"
|
||||
# 验证用system的提示词
|
||||
PROMPT = "你是一个医学专家,你需要根据用户的问题,给出带有思考的回答。"
|
||||
# 数据集question列名称
|
||||
QUES_LABEL = "question"
|
||||
# 数据集think列名称(可为空)
|
||||
THINK_LABEL = "think"
|
||||
# 数据集answer列名称
|
||||
ANS_LABEL = "answer"
|
||||
DATA_MAX_LENGTH = 2048
|
||||
|
||||
|
||||
|
|
|
|||
File diff suppressed because one or more lines are too long
|
|
@ -0,0 +1 @@
|
|||
{"url": "https://www.modelscope.cn/api/v1/datasets/krisfu/delicate_medical_r1_data/repo?Source=SDK&Revision=master&FilePath=r1_data_example.jsonl", "etag": null}
|
||||
|
|
@ -0,0 +1 @@
|
|||
{"description": "", "citation": "", "homepage": "", "license": "", "features": {"instruction": {"dtype": "string", "_type": "Value"}, "question": {"dtype": "string", "_type": "Value"}, "think": {"dtype": "string", "_type": "Value"}, "answer": {"dtype": "string", "_type": "Value"}, "metrics": {"quality_f1": {"dtype": "float64", "_type": "Value"}}}, "builder_name": "json", "dataset_name": "delicate_medical_r1_data", "config_name": "default", "version": {"version_str": "0.0.0", "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 8978405, "num_examples": 2407, "dataset_name": "delicate_medical_r1_data"}}, "download_checksums": {"hf://datasets/krisfu/delicate_medical_r1_data@master/r1_data_example.jsonl": {"num_bytes": 9198097, "checksum": null}}, "download_size": 9198097, "dataset_size": 8978405, "size_in_bytes": 18176502}
|
||||
Binary file not shown.
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
|
|
@ -0,0 +1,29 @@
|
|||
from transformers import AutoModelForCausalLM
|
||||
from peft import PeftModel, PeftConfig
|
||||
from config import Config,Default,Dir
|
||||
from modelscope import snapshot_download, AutoTokenizer
|
||||
import torch
|
||||
def load_model_and_tokenizer():
|
||||
print("🧼 开始加载模型...")
|
||||
# 在modelscope上下载Qwen模型到本地目录下
|
||||
model_dir = snapshot_download(Config.MODEL_NAME)
|
||||
# Transformers加载模型权重
|
||||
tokenizer = AutoTokenizer.from_pretrained(Config.MODEL_NAME, use_fast=False,
|
||||
trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto",
|
||||
torch_dtype=torch.bfloat16)
|
||||
model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法
|
||||
return model,tokenizer
|
||||
|
||||
if __name__ == "__main__":
|
||||
model, tokenizer = load_model_and_tokenizer()
|
||||
# 2. 加载 LoRA 适配器配置和权重
|
||||
peft_model_id = "./lora_adapter" # 训练后保存的路径
|
||||
peft_config = PeftConfig.from_pretrained(peft_model_id)
|
||||
# 3. 将 LoRA 权重加载到原始模型(动态注入,不修改原始模型)
|
||||
model_with_lora = PeftModel.from_pretrained(model, peft_model_id)
|
||||
# 4. 进行推理(示例:文本生成)
|
||||
input_text = "医生,我在研究内耳的前庭部分时,发现了一些特殊的结构,比如前庭嵴。请问前庭内还有哪些特殊的结构,它们的作用是什么?"
|
||||
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
||||
outputs = model.generate(**inputs, max_new_tokens=100)
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
|
|
@ -3,7 +3,9 @@ modelscope
|
|||
yapf===0.32.0
|
||||
swanlab
|
||||
accelerate
|
||||
peft
|
||||
#pip install --upgrade modelscope -i https://mirrors.aliyun.com/pypi/simple/
|
||||
#pip install yapf==0.32.0 -i https://mirrors.aliyun.com/pypi/simple/
|
||||
#pip install swanlab -i https://mirrors.aliyun.com/pypi/simple/
|
||||
#pip install accelerate -i https://mirrors.aliyun.com/pypi/simple/
|
||||
#pip install peft -i https://mirrors.aliyun.com/pypi/simple/
|
||||
91
train.py
91
train.py
|
|
@ -10,6 +10,62 @@ import json
|
|||
import random
|
||||
from config import Config,Default,Dir
|
||||
|
||||
class Config:
|
||||
# 基座模型
|
||||
MODEL_NAME = "Qwen/Qwen3-0.6B"
|
||||
# 数据集
|
||||
DATASET_NAME = "krisfu/delicate_medical_r1_data"
|
||||
# 数据集主题(子数据集)
|
||||
DATASET_SUBJECT = "default"
|
||||
# 数据集用途
|
||||
DATASET_SPLIT = "train"
|
||||
# 是否使用缓存
|
||||
DATASET_USE_CACHE = True
|
||||
# swanlab项目名称
|
||||
SWANLAB_PROJECT = "qweb3-sft-medical-10-11-1"
|
||||
# 验证用system的提示词
|
||||
PROMPT = "你是一个医学专家,你需要根据用户的问题,给出带有思考的回答。"
|
||||
# 数据集question列名称
|
||||
QUES_LABEL = "question"
|
||||
# 数据集think列名称(可为空)
|
||||
THINK_LABEL = "think"
|
||||
# 数据集answer列名称
|
||||
ANS_LABEL = "answer"
|
||||
DATA_MAX_LENGTH = 2048
|
||||
|
||||
|
||||
class Default:
|
||||
DATASET_PATH = os.getenv("DATASET_PATH", "./dataset") # 支持环境变量覆
|
||||
MODEL_DATASET_PATH = os.getenv("MODEL_DATASET_PATH", "./model_dataset") # 支持环境变量覆
|
||||
SAVE_DIR = "./saved_model" # 微调后模型存储位置
|
||||
TRAIN_DATASET_FILE = "train.jsonl"
|
||||
TEST_DATASET_FILE = "val.jsonl"
|
||||
TRAIN_JSONL_NEW_FILE = "train_format.jsonl"
|
||||
TEST_JSONL_NEW_FILE = "val_format.jsonl"
|
||||
|
||||
|
||||
dataset_short_name = Config.DATASET_NAME.split("/")[-1]
|
||||
model_dataset_short_name = Config.MODEL_NAME.split("/")[-1]
|
||||
# 确保缓存目录存在
|
||||
dataset_dir = os.path.normpath(
|
||||
os.path.join(Default.DATASET_PATH, dataset_short_name, Config.DATASET_SUBJECT, Config.DATASET_SPLIT)
|
||||
)
|
||||
model_dataset_DIR = os.path.normpath(
|
||||
os.path.join(Default.MODEL_DATASET_PATH, model_dataset_short_name, Config.DATASET_SUBJECT, Config.DATASET_SPLIT)
|
||||
)
|
||||
model_dir = os.path.normpath(
|
||||
os.path.join(Default.SAVE_DIR,model_dataset_short_name, dataset_short_name, Config.DATASET_SUBJECT, Config.DATASET_SPLIT)
|
||||
)
|
||||
os.makedirs(dataset_dir, exist_ok=True)
|
||||
os.makedirs(model_dataset_DIR, exist_ok=True)
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
|
||||
|
||||
class Dir:
|
||||
DATASET_DIR = dataset_dir
|
||||
MODEL_DIR = model_dir
|
||||
MODEL_DATASET_DIR = model_dataset_DIR
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -23,8 +79,13 @@ def dataset_jsonl_transfer(origin_path, new_path):
|
|||
for line in file:
|
||||
# 解析每一行的json数据
|
||||
data = json.loads(line)
|
||||
input = data["question"]
|
||||
output = f"<think>{data['think']}</think> \n {data['answer']}"
|
||||
input = data[Config.QUES_LABEL]
|
||||
output = ""
|
||||
if hasattr(Config, "THINK_LABEL") and Config.THINK_LABEL in data:
|
||||
output = data[Config.THINK_LABEL]
|
||||
if hasattr(Config, "ANS_LABEL") and Config.ANS_LABEL in data:
|
||||
output += f"{data[Config.ANS_LABEL]}"
|
||||
|
||||
message = {
|
||||
"instruction": Config.PROMPT,
|
||||
"input": f"{input}",
|
||||
|
|
@ -173,7 +234,7 @@ def process_func(example):
|
|||
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
|
||||
|
||||
|
||||
def set_trainer(train_dataset):
|
||||
def set_trainer():
|
||||
print("🧼 正在生成训练对象...")
|
||||
print(f"🧼 {Dir.MODEL_DIR}")
|
||||
args = TrainingArguments(
|
||||
|
|
@ -191,6 +252,7 @@ def set_trainer(train_dataset):
|
|||
gradient_checkpointing=True,
|
||||
report_to="swanlab",
|
||||
run_name=Config.MODEL_NAME,
|
||||
load_best_model_at_end=True,
|
||||
)
|
||||
|
||||
trainer = Trainer(
|
||||
|
|
@ -204,6 +266,8 @@ def set_trainer(train_dataset):
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
#释放显存
|
||||
torch.cuda.empty_cache()
|
||||
#设置SWANLAB
|
||||
set_swanlab()
|
||||
#加载模型和分词器
|
||||
|
|
@ -212,26 +276,7 @@ if __name__ == "__main__":
|
|||
train_dataset, eval_dataset = load_train_and_eval_data()
|
||||
model_train_json_file, model_test_json_file = get_model_train_dataset_json_file()
|
||||
#设置训练对象
|
||||
trainer = set_trainer(train_dataset)
|
||||
trainer = set_trainer()
|
||||
print("🚬🚬🚬 开始模型训练...")
|
||||
trainer.train()
|
||||
print(" 🎇🎇🎇模型训练完成,...")
|
||||
# 用测试集的前3条,主观看模型
|
||||
test_df = pd.read_json(model_train_json_file, lines=True)[:3]
|
||||
test_text_list = []
|
||||
for index, row in test_df.iterrows():
|
||||
instruction = row['instruction']
|
||||
input_value = row['input']
|
||||
messages = [
|
||||
{"role": "system", "content": f"{instruction}"},
|
||||
{"role": "user", "content": f"{input_value}"}
|
||||
]
|
||||
response = predict(messages, model, tokenizer)
|
||||
response_text = f"""
|
||||
Question: {input_value}
|
||||
LLM:{response}
|
||||
"""
|
||||
test_text_list.append(swanlab.Text(response_text))
|
||||
print(response_text)
|
||||
swanlab.log({"Prediction": test_text_list})
|
||||
swanlab.finish()
|
||||
|
|
@ -0,0 +1,224 @@
|
|||
from modelscope import snapshot_download, AutoTokenizer
|
||||
from config import Config,Default,Dir
|
||||
from peft import LoraConfig, get_peft_model
|
||||
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForSeq2Seq
|
||||
from modelscope.msdatasets import MsDataset
|
||||
import os
|
||||
import json
|
||||
import random
|
||||
import pandas as pd
|
||||
import torch
|
||||
from datasets import Dataset
|
||||
import swanlab
|
||||
|
||||
lora_config = LoraConfig(
|
||||
r=16, # 低秩矩阵的秩(控制参数量,通常4-64)
|
||||
lora_alpha=32, # 缩放因子(影响更新强度)
|
||||
target_modules=["q_proj", "v_proj"], # 微调注意力层的Q/V矩阵(关键层)
|
||||
lora_dropout=0.1, # 防止过拟合
|
||||
bias="none", # 不微调偏置项
|
||||
task_type="CAUSAL_LM", # 任务类型(因果语言模型)
|
||||
)
|
||||
|
||||
|
||||
def load_model_and_tokenizer():
|
||||
print("🧼 开始加载模型...")
|
||||
# 在modelscope上下载Qwen模型到本地目录下
|
||||
model_dir = snapshot_download(Config.MODEL_NAME)
|
||||
# Transformers加载模型权重
|
||||
tokenizer = AutoTokenizer.from_pretrained(Config.MODEL_NAME, use_fast=False,
|
||||
trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto",
|
||||
torch_dtype=torch.bfloat16)
|
||||
model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法
|
||||
return model,tokenizer
|
||||
|
||||
def mk_new_dataset_json(ds,dataset_train_json_file,dataset_test_json_file):
|
||||
data_list = list(ds)
|
||||
random.shuffle(data_list)
|
||||
split_idx = int(len(data_list) * 0.9)
|
||||
train_data = data_list[:split_idx]
|
||||
val_data = data_list[split_idx:]
|
||||
with open(dataset_train_json_file, 'w', encoding='utf-8') as f:
|
||||
for item in train_data:
|
||||
json.dump(item, f, ensure_ascii=False)
|
||||
f.write('\n')
|
||||
with open(dataset_test_json_file, 'w', encoding='utf-8') as f:
|
||||
for item in val_data:
|
||||
json.dump(item, f, ensure_ascii=False)
|
||||
f.write('\n')
|
||||
print(f"✅ 原始数据清洗完成 | 训练样本量: {len(train_data)} | 测试样本量: {len(train_data)}")
|
||||
|
||||
def get_dataset_json():
|
||||
# 确保缓存目录存在
|
||||
os.makedirs(Dir.DATASET_DIR, exist_ok=True)
|
||||
ds = MsDataset.load(
|
||||
dataset_name=Config.DATASET_NAME,
|
||||
subset_name=Config.DATASET_SUBJECT,
|
||||
split=Config.DATASET_SPLIT,
|
||||
cache_dir=Dir.DATASET_DIR # 统一使用配置的路径
|
||||
)
|
||||
dataset_train_json_file = Dir.DATASET_DIR+"/"+Default.TRAIN_DATASET_FILE
|
||||
dataset_test_json_file = Dir.DATASET_DIR + "/" + Default.TEST_DATASET_FILE
|
||||
print(f"🏷️ 原始训练数据文件:{dataset_train_json_file}")
|
||||
print(f"🏷️ 原始测试数据文件:{dataset_test_json_file}")
|
||||
if (not os.path.exists(dataset_train_json_file)
|
||||
or not os.path.exists(dataset_test_json_file)
|
||||
or not Config.DATASET_USE_CACHE):
|
||||
print("🏷️ 正在生成原始数据集...")
|
||||
mk_new_dataset_json(ds,dataset_train_json_file,dataset_test_json_file)
|
||||
return dataset_train_json_file,dataset_test_json_file
|
||||
|
||||
def get_model_train_dataset_json_file():
|
||||
model_train_json_file = Dir.MODEL_DATASET_DIR + "/" + Default.TRAIN_JSONL_NEW_FILE
|
||||
model_test_json_file = Dir.MODEL_DATASET_DIR + "/" + Default.TEST_JSONL_NEW_FILE
|
||||
return model_train_json_file, model_test_json_file
|
||||
def get_model_train_dataset_json():
|
||||
model_train_json_file,model_test_json_file = get_model_train_dataset_json_file()
|
||||
print(f"🏷️ 模型训练数据文件:{model_train_json_file}")
|
||||
print(f"🏷️ 模型测试数据文件:{model_test_json_file}")
|
||||
if not os.path.exists(model_train_json_file) or not os.path.exists(
|
||||
model_test_json_file) or not Config.DATASET_USE_CACHE:
|
||||
print("🏷️ 未找到模型对应数据集,准备从原始数据集进行生成数据集...")
|
||||
dataset_train_json_file,dataset_test_json_file = get_dataset_json()
|
||||
print("🏷️ 原始数据集生成成功...")
|
||||
print("🧼 开始转换模型训练数据集...")
|
||||
dataset_jsonl_transfer(dataset_train_json_file, model_train_json_file)
|
||||
print("🧼 开始转换模型验证数据集...")
|
||||
dataset_jsonl_transfer(dataset_test_json_file, model_test_json_file)
|
||||
return model_train_json_file,model_test_json_file
|
||||
|
||||
def dataset_jsonl_transfer(origin_path, new_path):
|
||||
"""
|
||||
将原始数据集转换为大模型微调所需数据格式的新数据集
|
||||
"""
|
||||
messages = []
|
||||
# 读取旧的JSONL文件
|
||||
with open(origin_path, "r") as file:
|
||||
for line in file:
|
||||
# 解析每一行的json数据
|
||||
data = json.loads(line)
|
||||
input = data[Config.QUES_LABEL]
|
||||
output = ""
|
||||
if hasattr(Config, "THINK_LABEL") and Config.THINK_LABEL in data:
|
||||
output = data[Config.THINK_LABEL]
|
||||
if hasattr(Config, "ANS_LABEL") and Config.ANS_LABEL in data:
|
||||
output += f"{data[Config.ANS_LABEL]}"
|
||||
|
||||
message = {
|
||||
"instruction": Config.PROMPT,
|
||||
"input": f"{input}",
|
||||
"output": output,
|
||||
}
|
||||
messages.append(message)
|
||||
# 保存重构后的JSONL文件
|
||||
with open(new_path, "w", encoding="utf-8") as file:
|
||||
for message in messages:
|
||||
file.write(json.dumps(message, ensure_ascii=False) + "\n")
|
||||
|
||||
|
||||
def predict(messages, model, tokenizer):
|
||||
device = "cuda"
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
||||
generated_ids = model.generate(
|
||||
model_inputs.input_ids,
|
||||
max_new_tokens=Config.DATA_MAX_LENGTH,
|
||||
)
|
||||
generated_ids = [
|
||||
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
||||
]
|
||||
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
return response
|
||||
|
||||
def load_train_and_eval_data():
|
||||
#获取训练数据集json.
|
||||
print("🧼 开始获取训练数据...")
|
||||
model_train_json_file,model_test_json_file = get_model_train_dataset_json()
|
||||
# 得到训练集
|
||||
train_df = pd.read_json(model_train_json_file, lines=True)
|
||||
train_ds = Dataset.from_pandas(train_df)
|
||||
train_dataset = train_ds.map(process_func, remove_columns=train_ds.column_names)
|
||||
# 得到验证集
|
||||
eval_df = pd.read_json(model_test_json_file, lines=True)
|
||||
eval_ds = Dataset.from_pandas(eval_df)
|
||||
eval_dataset = eval_ds.map(process_func, remove_columns=eval_ds.column_names)
|
||||
return train_dataset,eval_dataset
|
||||
|
||||
def process_func(example):
|
||||
"""
|
||||
将数据集进行预处理
|
||||
"""
|
||||
input_ids, attention_mask, labels = [], [], []
|
||||
instruction = tokenizer(
|
||||
f"<|im_start|>system\n{Config.PROMPT}<|im_end|>\n<|im_start|>user\n{example['input']}<|im_end|>\n<|im_start|>assistant\n",
|
||||
add_special_tokens=False,
|
||||
)
|
||||
response = tokenizer(f"{example['output']}", add_special_tokens=False)
|
||||
input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]
|
||||
attention_mask = (
|
||||
instruction["attention_mask"] + response["attention_mask"] + [1]
|
||||
)
|
||||
labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]
|
||||
if len(input_ids) > Config.DATA_MAX_LENGTH: # 做一个截断
|
||||
input_ids = input_ids[:Config.DATA_MAX_LENGTH]
|
||||
attention_mask = attention_mask[:Config.DATA_MAX_LENGTH]
|
||||
labels = labels[:Config.DATA_MAX_LENGTH]
|
||||
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
|
||||
|
||||
|
||||
def set_trainer():
|
||||
print("🧼 正在生成训练对象...")
|
||||
print(f"🧼 {Dir.MODEL_DIR}")
|
||||
args = TrainingArguments(
|
||||
output_dir=Dir.MODEL_DIR,
|
||||
per_device_train_batch_size=1,
|
||||
per_device_eval_batch_size=1,
|
||||
gradient_accumulation_steps=4,
|
||||
eval_strategy="steps",
|
||||
eval_steps=500,
|
||||
logging_steps=10,
|
||||
num_train_epochs=2,
|
||||
save_steps=500,
|
||||
learning_rate=1e-4,
|
||||
save_on_each_node=True,
|
||||
gradient_checkpointing=True,
|
||||
report_to="swanlab",
|
||||
run_name=Config.MODEL_NAME,
|
||||
load_best_model_at_end=True,
|
||||
)
|
||||
|
||||
trainer = Trainer(
|
||||
model=new_model,
|
||||
args=args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
|
||||
)
|
||||
return trainer
|
||||
|
||||
|
||||
def set_swanlab():
|
||||
os.environ["SWANLAB_PROJECT"] = Config.SWANLAB_PROJECT
|
||||
swanlab.config.update({
|
||||
"model": "",
|
||||
"prompt": Config.PROMPT,
|
||||
"data_max_length": Config.DATA_MAX_LENGTH,
|
||||
})
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 释放显存
|
||||
torch.cuda.empty_cache()
|
||||
# 设置SWANLAB
|
||||
set_swanlab()
|
||||
model,tokenizer = load_model_and_tokenizer()
|
||||
train_dataset, eval_dataset = load_train_and_eval_data()
|
||||
new_model = get_peft_model(model,lora_config)
|
||||
trainer = set_trainer()
|
||||
trainer.train()
|
||||
new_model.save_pretrained("./lora_adapter")
|
||||
tokenizer.save_pretrained("./lora_adapter")
|
||||
Loading…
Reference in New Issue