from transformers import pipeline classifier = pipeline( "zero-shot-classification", model="./nlp_structbert_zero-shot-classification_chinese-large", device="cpu", max_length=512, ignore_mismatched_sizes=True # 忽略维度不匹配警告 ) level1 = [ "食品", "电器", "洗护", "女装", "手机", "健康", "男装", "美妆", "电脑", "运动", "内衣", "母婴", "数码", "百货", "鞋包", "办公", "家装", "饰品", "车品", "图书", "生鲜", "家纺", "宠物", "奢品", "其它","药品" ] def theBestAndLow(goods): result = classifier( goods, candidate_labels=level1, truncation=True # 显式指定截断策略 ) labels = result['labels'] scores = result['scores'] print("最高分标签:", labels[0], "得分:", scores[0]) print("最低分标签:", labels[-1], "得分:", scores[-1]) theBestAndLow( "宇宙超萌儿童辅食有机果蔬蝴蝶面210g 数量:1盒装:")