彻底放弃huggingface,改用modelscope

This commit is contained in:
renzhiyuan 2025-10-13 16:25:30 +08:00
parent 3abfe72e19
commit e9b12df3a7
1 changed files with 27 additions and 35 deletions

View File

@ -1,8 +1,7 @@
import pandas as pd
from sklearn.model_selection import train_test_split
from modelscope import AutoTokenizer, AutoModelForSequenceClassification
from transformers import (
BertTokenizer,
BertForSequenceClassification,
Trainer,
TrainingArguments,
EarlyStoppingCallback
@ -15,10 +14,9 @@ import re # 用于正则表达式清洗
from sklearn.preprocessing import LabelEncoder
import joblib
# 1. 参数配置(集中管理)
# 1. 参数配置
class Config:
MODEL_NAME = "bert-base-chinese"
Train_CSV = "order_address.csv"
MAX_LENGTH = 64
BATCH_SIZE = 32
NUM_EPOCHS = 5
@ -32,7 +30,7 @@ class Config:
DEVICE = "cuda" if FP16 else "cpu"
# 2. 数据加载与预处理(添加异常处理和日志)
# 2. 数据加载与预处理
def load_data(file_path):
try:
df = pd.read_csv(file_path)
@ -47,17 +45,15 @@ def load_data(file_path):
# 新增:数据清洗函数 - 只保留中文字符
def clean_chinese_text(text):
"""
清洗文本保留中文字符
清洗文本保留中文字符英文字母和数字去除空格和特殊符号
"""
if not isinstance(text, str):
return ""
# 使用正则表达式匹配所有中文字符(包括中文标点符号)[^\u4e00-\u9fa5\u3000-\u303f\uff00-\uffef]
# 如果需要更严格的只保留汉字,可以使用:[\u4e00-\u9fa5]
cleaned_text = re.sub(r'[^\u4e00-\u9fa5]', '', text)
# 保留中文(\u4e00-\u9fa5、英文a-zA-Z和数字0-9去除其他所有字符包括空格、标点等
cleaned_text = re.sub(r'[^\u4e00-\u9fa5a-zA-Z0-9]', '', text)
return cleaned_text.strip()
# 3. 优化Dataset添加内存缓存和批处理支持
# 3. Dataset
class TextDataset(Dataset):
def __init__(self, dataframe, tokenizer, text_col="sentence", label_col="label"):
self.data = dataframe
@ -86,24 +82,20 @@ class TextDataset(Dataset):
}
# 4. 模型初始化(添加设备移动)
# 4. 模型初始化
def init_model(num_labels):
tokenizer = BertTokenizer.from_pretrained(Config.MODEL_NAME)
model = BertForSequenceClassification.from_pretrained(
Config.MODEL_NAME,
num_labels=num_labels,
ignore_mismatched_sizes=True # 可选
).to(Config.DEVICE)
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-chinese")
model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-chinese",num_labels=num_labels)
return tokenizer, model
# 5. 训练配置(添加早停和梯度累积)
# 5. 训练配置
def get_training_args():
return TrainingArguments(
output_dir=Config.OUTPUT_DIR,
num_train_epochs=Config.NUM_EPOCHS,
per_device_train_batch_size=Config.BATCH_SIZE,
per_device_eval_batch_size=Config.BATCH_SIZE * 2, # 评估时可用更大batch
output_dir=Config.OUTPUT_DIR, #输出目录
num_train_epochs=Config.NUM_EPOCHS, #训练轮数,适度训练会增加精度,训练过多可能会因为训练数据中的噪声(错误数据)导致精度下降,解决方案:正则,早停,数据增强;梯度爆炸
per_device_train_batch_size=Config.BATCH_SIZE, #前向传播forward pass处理的样本数比如若 per_device_train_batch_size=32且使用 2 块 GPU则每块 GPU 会独立处理 32 个样本。总批量大小total_batch_size由以下公式决定total_batch_size=per_device_train_batch_size×GPU 数量×gradient_accumulation_steps
per_device_eval_batch_size=Config.BATCH_SIZE * 2,
learning_rate=Config.LEARNING_RATE,
warmup_steps=Config.WARMUP_STEPS,
weight_decay=Config.WEIGHT_DECAY,
@ -117,13 +109,13 @@ def get_training_args():
metric_for_best_model="eval_loss",
greater_is_better=False,
fp16=Config.FP16,
gradient_accumulation_steps=2, # 模拟更大batch
gradient_accumulation_steps=2,
report_to="none", # 禁用wandb等报告
seed=42
)
# 6. 优化推理函数(添加批处理支持)
# 6.推理完测试函数
@torch.no_grad()
def batch_predict(texts, model, tokenizer, label_map, top_k=1, batch_size=16):
model.eval()
@ -158,7 +150,7 @@ def batch_predict(texts, model, tokenizer, label_map, top_k=1, batch_size=16):
# 主流程
if __name__ == "__main__":
# 1. 加载数据
df = load_data(Config.Train_CSV)
df = load_data("order_address.csv")
# 2. 数据清洗 - 只保留中文
print("🧼 开始清洗文本数据...")
@ -174,26 +166,26 @@ if __name__ == "__main__":
print(f"标签映射示例: {label_map}")
# 保存标签映射器(供推理时使用)
joblib.dump(label_encoder, "cate/label_encoder.pkl")
joblib.dump(label_encoder, "label_encoder.pkl")
print(f"✅ 标签映射完成 | 类别数: {len(label_map)}")
# 4. 划分数据集(使用 label_id 列)
# 4. 划分数据集
train_df, test_df = train_test_split(
df, test_size=0.2, random_state=42, stratify=df["label_id"] # 注意这里用 label_id
df, test_size=0.2, random_state=42, stratify=df["label_id"]
)
# 5. 初始化模型(使用数值标签的数量)
# 5. 初始化模型
num_labels = len(label_map)
tokenizer, model = init_model(num_labels)
# 6. 准备数据集(使用 label_id 列)
train_dataset = TextDataset(train_df, tokenizer, label_col="label_id") # 指定 label_col
train_dataset = TextDataset(train_df, tokenizer, label_col="label_id")
test_dataset = TextDataset(test_df, tokenizer, label_col="label_id")
# 7. 训练配置(保持不变)
# 7. 训练配置
training_args = get_training_args()
# 8. 训练器(保持不变)
# 8. 训练器
trainer = Trainer(
model=model,
args=training_args,
@ -202,12 +194,12 @@ if __name__ == "__main__":
callbacks=[EarlyStoppingCallback(early_stopping_patience=3)]
)
# 9. 训练和保存(保持不变)
# 9. 训练和保存
trainer.train()
model.save_pretrained(Config.SAVE_DIR)
tokenizer.save_pretrained(Config.SAVE_DIR)
# 12. 测试推理
test_samples = ["不二家棒棒糖", "iPhone 15", "无线鼠标"]
test_samples = ["山东省济南市莱芜区碧桂园天樾422502", "广东省广州市花都区狮岭镇山前旅游大道18号机车检修段", "江苏省苏州市吴中区吴中区木渎镇枫瑞路85号诺德·长枫雅苑北区10栋-303"]
# 先清洗测试样本
cleaned_samples = [clean_chinese_text(s) for s in test_samples]
predictions = batch_predict(cleaned_samples, model, tokenizer, label_map)