199 lines
5.3 KiB
Go
199 lines
5.3 KiB
Go
package embedding
|
|
|
|
import (
|
|
"bytes"
|
|
"context"
|
|
"encoding/json"
|
|
"fmt"
|
|
"io"
|
|
"net/http"
|
|
"time"
|
|
|
|
"knowlege-lsxd/internal/logger"
|
|
)
|
|
|
|
// OpenAIEmbedder implements text vectorization functionality using OpenAI API
|
|
type OpenAIEmbedder struct {
|
|
apiKey string
|
|
baseURL string
|
|
modelName string
|
|
truncatePromptTokens int
|
|
dimensions int
|
|
modelID string
|
|
httpClient *http.Client
|
|
timeout time.Duration
|
|
maxRetries int
|
|
EmbedderPooler
|
|
}
|
|
|
|
// OpenAIEmbedRequest represents an OpenAI embedding request
|
|
type OpenAIEmbedRequest struct {
|
|
Model string `json:"model"`
|
|
Input []string `json:"input"`
|
|
TruncatePromptTokens int `json:"truncate_prompt_tokens"`
|
|
}
|
|
|
|
// OpenAIEmbedResponse represents an OpenAI embedding response
|
|
type OpenAIEmbedResponse struct {
|
|
Data []struct {
|
|
Embedding []float32 `json:"embedding"`
|
|
Index int `json:"index"`
|
|
} `json:"data"`
|
|
}
|
|
|
|
// NewOpenAIEmbedder creates a new OpenAI embedder
|
|
func NewOpenAIEmbedder(apiKey, baseURL, modelName string,
|
|
truncatePromptTokens int, dimensions int, modelID string, pooler EmbedderPooler,
|
|
) (*OpenAIEmbedder, error) {
|
|
if baseURL == "" {
|
|
baseURL = "https://api.openai.com/v1"
|
|
}
|
|
|
|
if modelName == "" {
|
|
return nil, fmt.Errorf("model name is required")
|
|
}
|
|
|
|
if truncatePromptTokens == 0 {
|
|
truncatePromptTokens = 511
|
|
}
|
|
|
|
timeout := 60 * time.Second
|
|
|
|
// Create HTTP client
|
|
client := &http.Client{
|
|
Timeout: timeout,
|
|
}
|
|
|
|
return &OpenAIEmbedder{
|
|
apiKey: apiKey,
|
|
baseURL: baseURL,
|
|
modelName: modelName,
|
|
httpClient: client,
|
|
truncatePromptTokens: truncatePromptTokens,
|
|
EmbedderPooler: pooler,
|
|
dimensions: dimensions,
|
|
modelID: modelID,
|
|
timeout: timeout,
|
|
maxRetries: 3, // Maximum retry count
|
|
}, nil
|
|
}
|
|
|
|
// Embed converts text to vector
|
|
func (e *OpenAIEmbedder) Embed(ctx context.Context, text string) ([]float32, error) {
|
|
for range 3 {
|
|
embeddings, err := e.BatchEmbed(ctx, []string{text})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if len(embeddings) > 0 {
|
|
return embeddings[0], nil
|
|
}
|
|
}
|
|
return nil, fmt.Errorf("no embedding returned")
|
|
}
|
|
|
|
func (e *OpenAIEmbedder) doRequestWithRetry(ctx context.Context, jsonData []byte) (*http.Response, error) {
|
|
var resp *http.Response
|
|
var err error
|
|
url := e.baseURL + "/embeddings"
|
|
|
|
for i := 0; i <= e.maxRetries; i++ {
|
|
if i > 0 {
|
|
backoffTime := time.Duration(1<<uint(i-1)) * time.Second
|
|
if backoffTime > 10*time.Second {
|
|
backoffTime = 10 * time.Second
|
|
}
|
|
logger.GetLogger(ctx).Infof("OpenAIEmbedder retrying request (%d/%d), waiting %v", i, e.maxRetries, backoffTime)
|
|
|
|
select {
|
|
case <-time.After(backoffTime):
|
|
case <-ctx.Done():
|
|
return nil, ctx.Err()
|
|
}
|
|
}
|
|
|
|
// Rebuild request each time to ensure Body is valid
|
|
req, err := http.NewRequestWithContext(ctx, "POST", url, bytes.NewReader(jsonData))
|
|
if err != nil {
|
|
logger.GetLogger(ctx).Errorf("OpenAIEmbedder failed to create request: %v", err)
|
|
continue
|
|
}
|
|
req.Header.Set("Content-Type", "application/json")
|
|
req.Header.Set("Authorization", "Bearer "+e.apiKey)
|
|
|
|
resp, err = e.httpClient.Do(req)
|
|
if err == nil {
|
|
return resp, nil
|
|
}
|
|
|
|
logger.GetLogger(ctx).Errorf("OpenAIEmbedder request failed (attempt %d/%d): %v", i+1, e.maxRetries+1, err)
|
|
}
|
|
|
|
return nil, err
|
|
}
|
|
|
|
func (e *OpenAIEmbedder) BatchEmbed(ctx context.Context, texts []string) ([][]float32, error) {
|
|
// Create request body
|
|
reqBody := OpenAIEmbedRequest{
|
|
Model: e.modelName,
|
|
Input: texts,
|
|
TruncatePromptTokens: e.truncatePromptTokens,
|
|
}
|
|
|
|
jsonData, err := json.Marshal(reqBody)
|
|
if err != nil {
|
|
logger.GetLogger(ctx).Errorf("OpenAIEmbedder EmbedBatch marshal request error: %v", err)
|
|
return nil, fmt.Errorf("marshal request: %w", err)
|
|
}
|
|
|
|
// Send request (passing jsonData instead of constructing http.Request)
|
|
resp, err := e.doRequestWithRetry(ctx, jsonData)
|
|
if err != nil {
|
|
logger.GetLogger(ctx).Errorf("OpenAIEmbedder EmbedBatch send request error: %v", err)
|
|
return nil, fmt.Errorf("send request: %w", err)
|
|
}
|
|
defer resp.Body.Close()
|
|
|
|
// Read response
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
logger.GetLogger(ctx).Errorf("OpenAIEmbedder EmbedBatch read response error: %v", err)
|
|
return nil, fmt.Errorf("read response: %w", err)
|
|
}
|
|
|
|
if resp.StatusCode != http.StatusOK {
|
|
logger.GetLogger(ctx).Errorf("OpenAIEmbedder EmbedBatch API error: Http Status %s", resp.Status)
|
|
return nil, fmt.Errorf("EmbedBatch API error: Http Status %s", resp.Status)
|
|
}
|
|
|
|
// Parse response
|
|
var response OpenAIEmbedResponse
|
|
if err := json.Unmarshal(body, &response); err != nil {
|
|
logger.GetLogger(ctx).Errorf("OpenAIEmbedder EmbedBatch unmarshal response error: %v", err)
|
|
return nil, fmt.Errorf("unmarshal response: %w", err)
|
|
}
|
|
|
|
// Extract embedding vectors
|
|
embeddings := make([][]float32, 0, len(response.Data))
|
|
for _, data := range response.Data {
|
|
embeddings = append(embeddings, data.Embedding)
|
|
}
|
|
|
|
return embeddings, nil
|
|
}
|
|
|
|
// GetModelName returns the model name
|
|
func (e *OpenAIEmbedder) GetModelName() string {
|
|
return e.modelName
|
|
}
|
|
|
|
// GetDimensions returns the vector dimensions
|
|
func (e *OpenAIEmbedder) GetDimensions() int {
|
|
return e.dimensions
|
|
}
|
|
|
|
// GetModelID returns the model ID
|
|
func (e *OpenAIEmbedder) GetModelID() string {
|
|
return e.modelID
|
|
}
|