l_ai_knowledge/internal/application/service/metric/ndcg.go

79 lines
1.7 KiB
Go

package metric
import (
"math"
"knowlege-lsxd/internal/types"
)
// NDCGMetric calculates Normalized Discounted Cumulative Gain
type NDCGMetric struct {
k int // Top k results to consider
}
// NewNDCGMetric creates a new NDCGMetric instance with given k value
func NewNDCGMetric(k int) *NDCGMetric {
return &NDCGMetric{k: k}
}
// Compute calculates the NDCG score
func (n *NDCGMetric) Compute(metricInput *types.MetricInput) float64 {
gts := metricInput.RetrievalGT
ids := metricInput.RetrievalIDs
// Limit results to top k
if len(ids) > n.k {
ids = ids[:n.k]
}
// Create set of relevant documents and count total relevant
gtSets := make(map[int]struct{}, len(gts))
countGt := 0
for _, gt := range gts {
countGt += len(gt)
for _, g := range gt {
gtSets[g] = struct{}{}
}
}
// Assign relevance scores (1 for relevant, 0 otherwise)
relevanceScores := make(map[int]int)
for _, docID := range ids {
if _, exist := gtSets[docID]; exist {
relevanceScores[docID] = 1
} else {
relevanceScores[docID] = 0
}
}
// Calculate DCG (Discounted Cumulative Gain)
var dcg float64
for i, docID := range ids {
dcg += (math.Pow(2, float64(relevanceScores[docID])) - 1) / math.Log2(float64(i+2))
}
// Create ideal ranking (all relevant docs first)
idealLen := min(countGt, len(ids))
idealPred := make([]int, len(ids))
for i := 0; i < len(ids); i++ {
if i < idealLen {
idealPred[i] = 1
} else {
idealPred[i] = 0
}
}
// Calculate IDCG (Ideal DCG)
var idcg float64
for i, relevance := range idealPred {
idcg += float64(relevance) / math.Log2(float64(i+2))
}
// Handle division by zero case
if idcg == 0 {
return 0
}
// NDCG = DCG / IDCG
return dcg / idcg
}