l_ai_knowledge/internal/application/service/metric/map.go

71 lines
1.7 KiB
Go

package metric
import (
"knowlege-lsxd/internal/types"
)
// MAPMetric calculates Mean Average Precision for retrieval evaluation
type MAPMetric struct{}
// NewMAPMetric creates a new MAPMetric instance
func NewMAPMetric() *MAPMetric {
return &MAPMetric{}
}
// Compute calculates the Mean Average Precision score
func (m *MAPMetric) Compute(metricInput *types.MetricInput) float64 {
// Convert ground truth to sets for efficient lookup
gts := metricInput.RetrievalGT
ids := metricInput.RetrievalIDs
// Create sets of relevant document IDs for each query
gtSets := make([]map[int]struct{}, len(gts))
for i, gt := range gts {
gtSets[i] = make(map[int]struct{})
for _, docID := range gt {
gtSets[i][docID] = struct{}{}
}
}
var apSum float64 // Sum of average precision for all queries
// Calculate average precision for each query
for _, gtSet := range gtSets {
// Mark which predicted documents are relevant
predHits := make([]bool, len(ids))
for i, predID := range ids {
if _, ok := gtSet[predID]; ok {
predHits[i] = true
} else {
predHits[i] = false
}
}
var (
ap float64 // Average precision for current query
hitCount int // Number of relevant documents found
)
// Calculate precision at each rank position
for k := 0; k < len(predHits); k++ {
if predHits[k] {
hitCount++
// Precision at k: relevant docs found up to k / k
ap += float64(hitCount) / float64(k+1)
}
}
// Normalize by number of relevant documents
if hitCount > 0 {
ap /= float64(hitCount)
}
apSum += ap
}
// Handle case with no ground truth
if len(gtSets) == 0 {
return 0
}
// Return mean of average precision across all queries
return apSum / float64(len(gtSets))
}