63 lines
2.6 KiB
Go
63 lines
2.6 KiB
Go
package elasticsearch
|
|
|
|
import (
|
|
"maps"
|
|
"slices"
|
|
|
|
"knowlege-lsxd/internal/types"
|
|
)
|
|
|
|
// VectorEmbedding defines the Elasticsearch document structure for vector embeddings
|
|
type VectorEmbedding struct {
|
|
Content string `json:"content" gorm:"column:content;not null"` // Text content of the chunk
|
|
SourceID string `json:"source_id" gorm:"column:source_id;not null"` // ID of the source document
|
|
SourceType int `json:"source_type" gorm:"column:source_type;not null"` // Type of the source document
|
|
ChunkID string `json:"chunk_id" gorm:"column:chunk_id"` // Unique ID of the text chunk
|
|
KnowledgeID string `json:"knowledge_id" gorm:"column:knowledge_id"` // ID of the knowledge item
|
|
KnowledgeBaseID string `json:"knowledge_base_id" gorm:"column:knowledge_base_id"` // ID of the knowledge base
|
|
Embedding []float32 `json:"embedding" gorm:"column:embedding;not null"` // Vector embedding of the content
|
|
}
|
|
|
|
// VectorEmbeddingWithScore extends VectorEmbedding with similarity score
|
|
type VectorEmbeddingWithScore struct {
|
|
VectorEmbedding
|
|
Score float64 // Similarity score from vector search
|
|
}
|
|
|
|
// ToDBVectorEmbedding converts IndexInfo to Elasticsearch document format
|
|
func ToDBVectorEmbedding(embedding *types.IndexInfo, additionalParams map[string]interface{}) *VectorEmbedding {
|
|
vector := &VectorEmbedding{
|
|
Content: embedding.Content,
|
|
SourceID: embedding.SourceID,
|
|
SourceType: int(embedding.SourceType),
|
|
ChunkID: embedding.ChunkID,
|
|
KnowledgeID: embedding.KnowledgeID,
|
|
KnowledgeBaseID: embedding.KnowledgeBaseID,
|
|
}
|
|
// Add embedding data if available in additionalParams
|
|
if additionalParams != nil && slices.Contains(slices.Collect(maps.Keys(additionalParams)), "embedding") {
|
|
if embeddingMap, ok := additionalParams["embedding"].(map[string][]float32); ok {
|
|
vector.Embedding = embeddingMap[embedding.SourceID]
|
|
}
|
|
}
|
|
return vector
|
|
}
|
|
|
|
// FromDBVectorEmbeddingWithScore converts Elasticsearch document to IndexWithScore domain model
|
|
func FromDBVectorEmbeddingWithScore(id string,
|
|
embedding *VectorEmbeddingWithScore,
|
|
matchType types.MatchType,
|
|
) *types.IndexWithScore {
|
|
return &types.IndexWithScore{
|
|
ID: id,
|
|
SourceID: embedding.SourceID,
|
|
SourceType: types.SourceType(embedding.SourceType),
|
|
ChunkID: embedding.ChunkID,
|
|
KnowledgeID: embedding.KnowledgeID,
|
|
KnowledgeBaseID: embedding.KnowledgeBaseID,
|
|
Content: embedding.Content,
|
|
Score: embedding.Score,
|
|
MatchType: matchType,
|
|
}
|
|
}
|